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Abstract: We present main algorithms of new software application developed to calculate magnetic, spectral and 

calorimetric properties of materials under Crystal Electric Field (CEF) and Mean Field Approximation paradigm. 

The novelty of our approach lies in the automatic construction of Hamiltonian matrices and computation of true 

3-dimensional properties of the material in wide range of temperatures also around the phase transition 

temperature. User defined calculation rules as  real or complex matrices and two calculation spaces (|JJz> or  

|LSLzSz>) to define interactions, utilize single diagonalization procedure in all cases. Our software predicts  

thermal dependent properties of materials in isostructural series of compounds, such as: magnetic moment in 

ordered state, paramagnetic susceptibility, specific heat, entropy and absorption spectra. Calculated properties 

are closely related to local symmetry of crystal surrounding of paramagnetic ion. Obtained angular momentum 

coordinates of paramagnetic ions makes it possible to calculate anisotropy coefficients as a result of dynamic 

calculations using Mean Field Approximation scheme. 
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1 Introduction  
Materials with special magnetic properties are of 

great importance to our civilization. To predict 

properties of some new material and to see if it 

satisfies given requirements we need to produce a 

sample (which may be expensive) or an efficient and 

accurate method of calculating its fine electronic 

structure and simulating properties we are interested 

in. In this paper we deal with this problem for solid 

compounds with localized electron states - our aim is 

to find and parameterize the most important 

interactions in atoms and ions in ligand environments 

and to perform fast calculations of magnetic 

properties that can produce reliable results. Our 

method is based on Crystal Electric Field (CEF) 

theory and makes it possible to easily transfer the 

influence of local charge surroundings between 

different ions (i.e. central ion substitution). Further 

details on Atomic Matters computation system are 

published in [1] and are available on the software web 

page [2], together with hundreds of examples - 

calculations of ions of selected materials from 

different areas of the periodic table. Single atomic 

properties calculated by Atomic Matters accurately 

describe properties of materials in defined 

temperature regions. We have calculated properties 

of materials in both paramagnetic and ordered states 

for over 100 real materials [2]. Although the static 

Atomic Matters calculations are surprisingly useful, 

they cannot provide accurate description of phase 

transitions. Therefore, we decided to develop 

software for phase-transition simulations according 

to the Mean Field Approximation model. In this 

paper we describe our model and its theoretical 

justification and give outlines of the algorithms used 

by the software. 

 

http://www.atomicmatters.eu/


2 Theoretical background  
Our theoretical approach is based on methods dating 

back to [3] and further developed through the history 

of atomic and solid state physics; for some general 

introduction and references see for example [4-8]. 

Taking into consideration the individual population 

of energy levels of the fine electronic structure at 

different temperatures enables one to define the 

temperature dependencies of such properties as: free 

energy, magnetic entropy, magnetic susceptibility 

(calculated for different orientations of elementary 

cell in relation to the direction of magnetic field 

vector), p, d or f -electronic contribution to specific 

heat, structure of discrete electron levels and the 

probability of the INS (Inelastic Neutron Scattering) 

transitions, magnetic anisotropy, spin and orbital 

contribution to angular momentum of open electron 

subshell and many more. We use the following 

CEF+Spin-Orbit+Zeeman Hamiltonian: 
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Bm
n denotes CEF parameters, Om

n are Stevens 

operators, -is the spin–orbit constant, and gL and 

ge≈ 2.002319 are the gyromagnetic factors, µB is the 

Bohr magneton and Bext is the external magnetic 

field.  

According to Mean Field Approximation (MFA) 

methodology, magnetic phase transitions of 

ionic/atomic systems according to dynamic 

calculations of the molecular field Bmol, is simply 

defined as: 
)3((T)(T) molmol mB n  

Such self-consistent calculations can only be 

performed after establishing the molecular field 

factor nmol that is closely related to the temperature of 

phase transitions, TC.  

For calculating properties in temperatures in ordered 

state and around the magnetic phase transition point, 

a self-consistent methodology for molecular field 

calculation called Mean Field Approximations 

(MFA) is applied. The idea behind this method is to 

estimate the direction and value of the magnetic field 

(molecular field) generated by ions at a defined 

temperature, and to calculate the influence of this 

magnetic field for electronic state structures of ions. 

In a selected calculation space, according to equation 

(1) we define a molecular field as an expected value 

of the total moment of the electronic subshell 

multiplied by the molecular field, inter ionic 

exchange factor nmol: 
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   or 
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The formal expression of the full Hamiltonian used 

by Atomic Matters MFA computation system, 

according to the chosen calculation space: |JJz> or 

|LSLzSz> respectively, has the form: 
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The eigenvectors of the Hamiltonian are described 

according to the selected base of calculations by the 

total momentum quantum numbers |JJz> or spin and 

orbit quantum numbers |LSLzSz>. Calculated 

eigenvectors and expected values define spin and 

orbital magnetic moments of paramagnetic ions. 

Using the commutation relations of the angular 

momentum operators, we obtain information about 

expected values of the projections of magnetic 

momentum of all electronic states [4,5,7,9]. 

Taking into consideration the possibility of the 

thermal population of states we automatically obtain 

thermal evolution of the single ion properties of the 

compound. This technique is based on the equivalent 

operator theory [4] defined as the CEF widened by 

thermodynamic and analytical calculations defined 

as the supplement of the CEF theory by including 

thermodynamic and analytical calculations. 

At a temperature of T = 0 K, only the ground state is 

occupied. In this situation, the magnetic moment of 

the ion is exactly equal to the momentum of the 

ground state. At extremely low temperatures, it is 

possible to excite the system e.g. by magnetic 

interaction with low-energy neutrons (which is used 

in Inelastic Neutron Scattering Spectroscopy, INS). It 

should be remembered, however, that the observed 

transitions are excitations from the ground state. 

When the temperature rises, the probability of 

occupying higher states increases according to the 

Boltzmann statistics. The number of ions with the 

energy Ei within a system at temperature T, is: 
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In the above expression, N denotes the total number 

of particles, and Z is the statistical sum of states 

(partition function). Knowing the statistical sum of 

the states, we can determine the Helmholtz free 

energy F(T): 
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The fine structure of states (Ei, i) allows determining 

the thermodynamic functions for the statistical group 

of N ions. The most sensible value for is 

N0≈6.022.1023 mol-1 (Avogadro constant). 

In our methodology, calculating the magnetization 

amounts to summing the identically behaving 

magnetic moments of individual ions with an 

unclosed electron shell. Due to the fact that the open 

subshell ions are in the self-aligned molecular field, 

their magnetic moment changes with temperature. 

Bearing in mind that each eigenstate of the CEF 

Hamiltonian is related to its magnetic moment, the 

total moment of a strongly correlated electron system 

at a given temperature is the resultant moment of 

occupied states calculated with the inclusion of the 

Boltzmann weight: 
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Where: α indexes directional components, i numbers 

the Hamiltonian eigenstates, while i represents the 

expected value of the total angular momentum along 

the α-axis in the i-th state. This approach provides a 

clear way to determine the components of the total 

magnetic moment of paramagnetic ions. The total 

magnetic moment of the ion consists of the orbital 

and spin parts: m=mL+mS. 

According to thermodynamic principles, the 

contribution of localized electrons to the total 

specific heat of materials can be calculated by 

numerical derivation of Helmholtz free energy: 
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This makes it possible to calculate entropy according 

to the well-known definition: 
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The value of electronic entropy for a defined 

temperature is difficult to compare, but the 

isothermal change of the entropy of the system at a 

given temperature is a very important material 

parameter that describes its thermomagnetic 

properties. Isothermal Entropy change -S(T, Bext), 

captured for different temperatures under the 

influence of different magnetic fields, is one the most 

important properties of a material that describes its 

usefulness as a magnetocaloric material.  The value 

S(T, Bext), extracted from experimental specific heat 

measurements, is often presented as a basic 

description of the Magnetocaloric Effect (MCE) of a 

material [10]. 

Atomic Matters MFA also provides single-ionic 

magnetocrystalline anisotropy prediction including 

full calculations (without Brillouin functions 

approximation) of magnetocrystalline constants 

Ki(T) for defined range of temperature according to 

relations given in [11]: 
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where: 
T

ˆ m

nO  denotes of thermal expected values of 

Stevens operators. 

More details about calculation methods of our 

theoretical approach are available on Atomic Matters 

website [2]. 

 

3 Algorithms 
Following the approach presented in previous 

chapter, we conclude that it is possible calculate 

magnetic properties of a material, provided that 

simulation software is capable of doing the 

following: 

- define crystal-electric field of the ion (CEF 

parameters) and all considered interactions 

(spin-orbit coupling, magnetic field) 

- generate and diagonalize the resulting 

Hamiltonian matrix  

- calculate properties of the material 

 

The first task is widely covered in [1] so now we 

present a general outline of our algorithm for 

Hamiltonian matrix generation and diagonalization. 

 

Main algorithm. 
Input:  ion (eg. Sm3+), calculation base (|LSLzSz> or 

|JJz>), calculation field (real or complex), crystal-



field parameters Am
n, magnetic field B, spin-orbit 

coefficient (only for the |LSLzSz> base) 

Output: eigenvalues and eigenvectors of the 

Hamiltonian matrix given by (1) or (2) 

Algorithm:  
1. obtain the electronic configuration and ionic 

radii of the ion 

2. calculate Stevens factors n for the electronic 

configuration 

3. construct (real part of) Stevens (Om
n) and 

magnetic field ((L+geS).B or J.B) operators 

matrices 

4. if calculation base is |LSLzSz> construct the 

spin-orbit (L.S) interaction matrix 

5. if calculation field is complex, construct 

imaginary part of the Stevens and magnetic 

field operators matrices 

6. if calculation field is complex, transform real 

matrices constructed in steps 3-5 to complex 

matrices 

7. multiply constructed matrices with 

appropriate coefficients (n , <rn>, Am
n  , ) 

and add them together to form the 

Hamiltonian matrix 

8. diagonalize the Hamiltonian matrix using 

Jacobi method to determine its eigenvalues 

and eigenvectors 

9. if calculation field is complex, transform 2n 

eigenvalues and 2n eigenvectors obtained in 

step 8 to n real eigenvalues and n (possibly 

complex) eigenvectors 

 

We now summarize specific methods used to 

perform calculations in Main algorithm and justify 

them according to our theoretical model. 

 

Stevens factors calculation (step 2 in Main 

algorithm). 

As seen from our general formula for the 

Hamiltonian (1) or (2), we use the Am
n Stevens 

parameters to express the crystal-field interaction - as 

they are the most general and ion-independent and 

thus allow for easy transfer of crystalline structure 

between different ions. But to make the transfer 

possible and to actually construct the Hamiltonian 

matrix, we also need to calculate the Stevens factors 

n and the values of <rn> for n=2,4,6. The averages 

of shell radii powers <rn> can be found in the 

literature (unfortunately, mainly for the 3d transition 

metal ions and the trivalent ions of the 4f group) – 

they are generally calculated using the Hartree-Fock 

methodology and we include a list of known values 

with references taken from [7,12] in our software. 

New values can be easily entered by the user and are 

automatically applied in future calculations. As for 

the values of Stevens factors however, we do not rely 

on the lists given in the literature, as they contain 

numerous errors (see for ex. [9]). On the contrary, 

following the methods outlined in [7], we were able 

to develop analytic formulas for these factors using 

integrals of spherical harmonics, given below: 
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Where O0
n denote Stevens operator equivalents [4], 

P0
n Legendre polynomials and m

n standard spherical 

harmonics. Moreover l numbers atomic orbitals (s, p, 

d, f,…) and J (resp. L) is the total (resp. orbital) 

angular momentum quantum number of the ground J-

multiplet (ground atomic LS-term) established by 

Hund’s rules.

This way we can tabulate exact values of n for all 

possible configurations (all possible ions) and use 

them in our calculations and parameter transfers. It is 

worth noting that using the formulas for n also 

enables Atomic Matters to perform automatic 

recalculation of parameters between various CEF 

conventions. 

 

Hamiltonian matrix transformations and 

diagonalization (steps 6, 8, 9 in Main algorithm). 

To provide full 3-dimensional information associated 

with the considered ion, we have to deal with 

complex-valued operators (eg. Jy, Ly, Sy) and 

matrices with complex entries. This is rarely 

considered in literature, fortunately recent results of 

[13] allowed us to build efficient diagonalization 

method that can be applied to both real and complex 

symmetric matrices. For real matrices (when selected 

calculation field is real and calculations are limited to 

2-dimensional space given by the x- and z-axis) we 

use standard Jacobi diagonalization procedure based 

on rotations (see for example [14]). 

 

For complex matrices we need some simple 

preparatory steps that are based on the following 

paradigm: each complex entry z=a+bi in the complex 

matrix is represented by a 2x2 real (sub)matrix of the 

form: 

a b 



-b a 

This way we obtain real (and symmetric) matrix of 

dimension 2nx2n as a representation of complex 

matrix of dimension nxn. Of course in Step 6 the real-

valued parts of the Stevens, magnetic field and spin-

orbit operators of Steps 3 and 4 will be transformed 

to entries of the form: 

a 0 

0 a 

while imaginary parts of Step 5 will be transformed 

to: 

0 b 

-b 0 

in the final 2nx2n matrix. This way we can apply 

modifications to the Jacobi method presented in 

[13,15] and obtain an algorithm performing 

operations on real numbers only. Main advantage of 

this approach is the possibility to use the same 

diagonalization procedure for real and complex 

matrices and to perform Step 9 in the algorithm by 

simply taking the first n of total 2n eigenvalues and 

their corresponding eigenvectors. This fact is of great 

importance as we often have to deal with eigenvalues 

(i.e. energy levels) of multiplicity 2 or more and we 

can be sure that the correct eigenvectors are selected. 

 

We now proceed to the second algorithm - used by 

our Mean Field Approximation scheme found in 

Atomic Matters MFA software. Detailed flow chart 

of the whole procedure is given in Appendix 1 but 

here we concentrate on the part called “computation 

loop” in which the self-consistent mean-field 

calculation takes place. 

 

MFA calculation algorithm. 
Input:  as in the Main algorithm; molecular field 

factor nmol, temperature Tmax and temperature step dT 

Output:  time dependency of energy levels, magnetic 

susceptibility, anisotropy, etc. 

Algorithm: 
1. choose initial vector Bmol and set temperature to 

T=0 

2. while T<Tmax do 

2.1. run Main algorithm with B=Bext+Bmol to 

calculate magnetic moment m 

2.2. if |Bmol + nmol
.m| >  then set Bmol = -nmol

.m 

and repeat Step 2.1 else proceed to Step 2.3 

2.3. calculate energy levels, mag. susceptibility, 

anisotropy, etc. at temperature T 

2.4. set T=T+dT 

3. end 

 

The algorithm is fairly simple and relies on running 

Main algorithm with input modified on every step; it 

is clear that magnetic field contribution is the only 

part of the Hamiltonian that changes in subsequent 

steps and this can be used to speed up calculations. 

Also, to avoid infinite loop in Steps 3-4 we need to 

set some maximum number of iterations (100 is 

sufficient in most cases) and some threshold value  

(we used 0.001) – both values can be adjusted in the 

software. The algorithm provides a self-consistent 

calculation method for magnetic properties of the ion 

in question. Properties we can calculate in Step 5 

include for example: magnetic susceptibility and its 

inverse, (x, y and z-) directional components of 

magnetic moment, magnetocrystalline anisotropy 

coefficients, specific heat and entropy. Most 

properties are straightforward to calculate from their 

equations, for example (11), (12), (13), (14) using 

standard methods for numerical differentiation and 

integration from [14]. We present method of 

calculation anisotropy coefficients as it is rarely 

found in the literature. 

 

Magnetocrystalline anisotropy coefficients Ki 

calculation. 

Using formulas (15) we can simulate temperature 

dependence of the anisotropy coefficients Ki, 

provided we are able to calculate thermal expected 

values of Stevens operators. Following [11], these 

expected values are calculated as the “double” 

Boltzmann sum: 
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where i(T) denotes the eigenfunction associated 

with eigenenergy Ei(T) of the Hamiltonian (1) or (2) 

at temperature T and i(T) are the Boltzmann 

coefficients of equation (8). Note that the values 

obtained this way are given in energy units (per 

formula unit) and need to be scaled with material-

dependent factor to obtain commonly used units (like 

J/m3), but relations between the Ki(T) for selected ion 

are preserved and can be conveniently analyzed on 

the graph produced by our software. 

 

4 Conclusions and future work 
We presented unified approach to the simulation of 

magnetic properties of materials using two software 

tools: Atomic Matters (for calculations with ions in 

paramagnetic state) and Atomic Matters MFA (for 

dynamic time-dependent calculations in 

ordered/paramagnetic state that is able to simulate 

phase transitions). Our methods allow several 

previous approximations to be treated in one 

framework and also provide generalization that gives 



full 3-dimensional information for the considered 

material. Validity of our approach is confirmed by 

several experimental results [16-19] and seems 

unlikely that similar predictions can be easily 

obtained with some other methodology. 

We plan developing procedures to calculate some 

approximate values of ionic radii <rn> or spin-orbit 

coefficient  for large groups of ions (when exact 

values are not known). This is the only obstacle that 

prohibits the user from transferring crystal-field 

parameters (i.e. crystal structure) between materials 

differing only with central ion. We will try to 

incorporate additional parameters that apply to CEF 

recalculation, for example Sternheimer shielding 

factors [20,21]. We also consider modifying our 

algorithms to support compounds with two-lattice 

structure and two sets of crystal-field parameters, 

though it will require great amount of computations. 

The extension of our mean field approach to include 

changes of the crystal structure (lattice parameters) 

magnetostriction is also considered. 

Our ultimate goal is to automate the process of 

finding crystal-field parameters and build (maybe 

using some methods of artificial intelligence) 

software that would be able to automatically predict 

the structure and parameters of materials with 

interesting properties needed in various applications 

(for example permanent magnets, materials with 

large magnetocrystalline anisotropy or 

magnetocaloric effect).  
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     APENDIX 1. Flow chart of Atomic Matters MFA computation.  

 

 

 


