

Physica B 312-313 (2002) 858-860

www.elsevier.com/locate/physb

Anisotropic magnetic properties of ErRu₂Si₂ as a consequence of the tetragonal structure

R. Michalski^{a,b,*}, Z. Ropka^b, R.J. Radwanski^{a,b}

^a Institute of Physics, Pedagogical University, 30-084 Krakow, Poland ^b Center for Solid State Physics, S^{nt} Filip 5, 31-150 Krakow, Poland

Abstract

Magnetic properties of ErRu_2Si_2 have been calculated as resulting from the fine electronic structure of the 4f¹¹ configuration of the Er atom taking into account crystal-field and inter-site spin-dependent exchange interactions. Our calculations yield the zero-temperature moment value and its direction, single-crystalline magnetization curves, temperature dependence of the magnetic susceptibility and of the specific heat with the sharp peak at T_N in very good agreement with experiment. Magnetic properties have been found to be strongly anisotropic due to the tetragonal crystal symmetry. These studies reveal the importance of low-symmetry charge multipolar interactions in description of magnetic properties of real 4f systems. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Crystal electric field; Magnetic anisotropy; ErRu₂Si₂

ErRu₂Si₂ crystallizes in the tetragonal structure ThCr₂Si₂-type and orders antiferromagnetically below $T_{\rm N} = 6 \,\mathrm{K}$ with the easy axis [110] [1]. The magnetic ordering is marked in the temperature dependence of the specific heat as a large λ anomaly [2]. The magnetic structure of ErRu₂Si₂ deduced from neutron diffraction experiments [3,4] reveals antiferromagnetic interactions between ferromagnetic layers with the magnetic wave vector q = (1/5, 0, 0). The experimentally observed ordered magnetic moment Er-ions is $m_{Er} = 7.3 \mu_B$ [1– 4]. The aim of this paper is to present results of the calculations of magnetic properties of ErRu₂Si₂. These properties have been related to the Er³⁺ ions possessing the configuration 4f¹¹. The associated fine electronic structure is obtained by taking into account crystal-field (CEF) and inter-site spin-dependent exchange interactions. The general Hamiltonian contains the single-ionlike and the intersite terms

$$H = \sum \sum B_n^m \ddot{O}_n^m (J, J_z) + n_{\rm mol} g_J^2 \mu_{\rm B}^2 \left(-J \langle J \rangle + \frac{1}{2} \langle J \rangle^2 \right) + g_J \mu_{\rm B} J \cdot B_{\rm ext}$$
(1)

The first term is the CEF Hamiltonian written for the lowest multiplet (${}^{4}I_{15/2}$, $g_{J} = 6/5$). The second term represents the exchange interactions between the Er moments written in the dynamical-mean-field approximation with the molecular-field coefficient n_{mol} . The third term describes the Zeeman effect. The energy level scheme of the 4f¹¹ (Er³⁺ ion) in the tetragonal CEF Hamiltonian contains 8 Kramers doublets Fig. 1. A final set of the tetragonal CEF parameters, $B_2^0 =$ +1.6 K, $B_4^0 = -5.0 \text{ mK}$, $B_4^4 = -4.5 \text{ mK}$, $B_6^0 = -5\mu \text{ K}$ and $B_6^4 = -0.52 \text{ mK}$, has been derived by our selfconsistent analysis of experimental data with making use of parameters derived for PrRu₂Si₂ (direct single-ion recalculations from the $PrRu_2Si_2$ parameters give: $B_2^0 =$ $B_4^4 = -4.52 \,\mathrm{mK}, \ B_6^{\bar{0}} =$ $+1.58 \text{ K}, B_4^0 = -4.97 \text{ mK},$ -105μ K and $B_6^4 = -0.393$ mK) [5,6]. The final set of CEF parameters describes well: (i) large anisotropy of the temperature dependence of the susceptibility in the paramagnetic region, (ii) the direction of the magnetic moment in the ordered state, (iii) the spontaneous

^{*}Corresponding author: R. Michalski, Center for Solid State Physics, S^{nt} Filip 5, 31-150 Krakow Poland. Tel.: +48-12-6336146, fax: +48-12-6324012.

E-mail address: sframich@wsp.krakow.pl (R. Michalski).

moment of the Er ion of $m_{Er} = 7.2\mu_B$, (iv) the large anisotropy of the magnetization curves (with the observed in-plane anisotropy), (v) temperature dependence of the specific heat with the characteristic λ -type peak at T_N . The consistent description of so many physical properties provides the strong argument for our theoretical approach.

At $T_{\rm N}$ of 6K the magnetic order starts to dominate the temperature disordering. In our calculations, it is accounted for by the effective exchange interaction parameter $n_{\rm mol}$ of $0.34 \,\mathrm{T}/\mu_{\rm B}$. The magnetic ordering produces the abrupt change in the energy level scheme (the removal of the Kramers degeneracy), Fig. 1, that manifests as the λ peak at $T_{\rm N}$ (Fig. 3). The calculated moment of the Er ion is parallel to the [110] direction in agreement with experiment. It amounts to $7.2\mu_{\rm B}$ at 0 K reproducing the experimental datum [1]. This moment consists of the spin and orbital part ($m_{\rm S} = +2.4\mu_{\rm B}$ and $m_{\rm L} = +4.8\mu_{\rm B}$). The magnetic moment of the Er³⁺ ion is tied to the [110] direction by the higher-order charge multipolar interactions. The full magnetization curves, at 2.0 K, calculated within our CEF-based approach are presented in Fig. 2. They are highly anisotropic. Our results in Fig. 2 have been shifted by the spin-flop field $B_{\rm sf}$ of 0.4 T in order to take into account the antiferromagnetic interactions. The way of taking into account the internal field has been discussed in Ref. [5].

The rare-earth specific heat of ErRu₂Si₂, calculated by making use of the general formula based on the free energy calculation (Eq. 2) in Ref. [7], is shown on Fig. 3.

Fig. 1. The energy level scheme of the ErRu_2Si_2 with the expectation values of J_z and J_x in the paramagnetic state.

Our heat calculations reproduce well: (i) a λ -type peak at 6 K associated with the occurrence of the antiferromagnetic order (ii) a tail of the Schottky-like peak above T_N , (iii) the overall entropy. This good agreement indicates the substantial confidence to the presently derived fine electronic structure. The obtained values of the CEF parameters for ErRu₂Si₂ are close to parameters directly recalculated from the isostructural compound PrRu₂Si₂. It is a good confirmation of the found CEF parameters for both compounds PrRu₂Si₂ and ErRu₂Si₂.These studies reveal the importance of low-symmetry charge multipolar interactions in description of magnetic properties of real 4f systems.

Fig. 2. The calculated magnetization curves at 2.0 K (lines) along the main crystallographic directions of the tetragonal unit cell. Points denote experimental data from Ref. [1].

Fig. 3. The calculated temperature dependence of the 4f contribution to the specific heat of $ErRu_2Si_2$ (the dashed-point line). Points are experimental data from Ref. [2].

References

- [1] T. Takeuchi, et al., J. Magn. Magn. Mater. 177–181 (1998) 1081.
- [2] R. Hamada, et al., J. Magn. Magn. Mater. 140–144 (1995) 907.
- [3] M. Slaski, et al., J. Magn. Magn. Mater. 46 (1984) 114.
- [4] A. Szytula, et al., J. Magn. Magn. Mater. 80 (1989) 200.
- [5] R. Michalski, et al., J. Phys.: Condens. Matter 12 (2000) 7609.
- [6] R. Michalski, et al., Acta Phys. Pol. A 97 (2000) 767.
- [7] R.J. Radwanski, et al., J. Phys.: Condens. Matter 4 (1992) 8853.